A gentleman’s guide to Smiths electronic tachometers

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Identifying a tachometer</td>
<td>4</td>
</tr>
<tr>
<td>Other Smiths tachometers</td>
<td>4</td>
</tr>
<tr>
<td>The Smiths RVI electronic tachometers</td>
<td>5</td>
</tr>
<tr>
<td>RVI Gen-1 tachometers</td>
<td>6</td>
</tr>
<tr>
<td>RVI Gen-1 OEM tachometer</td>
<td>6</td>
</tr>
<tr>
<td>RVI Gen-1 accessory tachometer</td>
<td>7</td>
</tr>
<tr>
<td>RVI Gen-2 tachometers</td>
<td>9</td>
</tr>
<tr>
<td>RVI Gen-2 OEM tachometer</td>
<td>9</td>
</tr>
<tr>
<td>RVI Gen-2 accessory tachometer</td>
<td>10</td>
</tr>
<tr>
<td>The Smiths RVC electronic tachometers</td>
<td>11</td>
</tr>
<tr>
<td>RVC Gen-3 tachometer</td>
<td>11</td>
</tr>
<tr>
<td>RVC Gen-3 OEM tachometer</td>
<td>11</td>
</tr>
<tr>
<td>RVC Gen-3 accessory tachometer</td>
<td>11</td>
</tr>
<tr>
<td>RVC Gen-4 tachometer</td>
<td>12</td>
</tr>
<tr>
<td>RVC Gen-4 OEM tachometer</td>
<td>12</td>
</tr>
<tr>
<td>RVC Gen-4 accessory tachometer</td>
<td>12</td>
</tr>
<tr>
<td>Checking an electronic tachometer</td>
<td>14</td>
</tr>
<tr>
<td>TEST METHODS – DIGITAL MULTIMETER</td>
<td>15</td>
</tr>
<tr>
<td>TEST METHODS – MOVING COIL MULTIMETER</td>
<td>16</td>
</tr>
<tr>
<td>Fitting a tachometer to the car – and getting it working!</td>
<td>17</td>
</tr>
<tr>
<td>All tachometers:</td>
<td>17</td>
</tr>
<tr>
<td>RVI Instruments:</td>
<td>17</td>
</tr>
<tr>
<td>RVC instruments:</td>
<td>18</td>
</tr>
<tr>
<td>Tachometer troubleshooting notes - installing:</td>
<td>18</td>
</tr>
<tr>
<td>RVI type:</td>
<td>18</td>
</tr>
<tr>
<td>RVC type:</td>
<td>19</td>
</tr>
<tr>
<td>Modified ignition systems:</td>
<td>19</td>
</tr>
<tr>
<td>External tachometer interface modules:</td>
<td>19</td>
</tr>
<tr>
<td>Troubleshooting electronic tachometer – already fitted:</td>
<td>20</td>
</tr>
<tr>
<td>Appendix A – accessory tachometer wiring</td>
<td>21</td>
</tr>
<tr>
<td>Positive earth vehicle</td>
<td>21</td>
</tr>
<tr>
<td>Negative earth vehicle</td>
<td>22</td>
</tr>
<tr>
<td>Appendix B – Possibly useful information?</td>
<td>23</td>
</tr>
<tr>
<td>Mechanical tachometer woes</td>
<td>23</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>23</td>
</tr>
<tr>
<td>RVI tachometer triggering</td>
<td>24</td>
</tr>
<tr>
<td>Appendix C - Gen-1 tachometer iron core:</td>
<td>25</td>
</tr>
<tr>
<td>Change log:</td>
<td>26</td>
</tr>
</tbody>
</table>
Introduction

Smiths Motor Accessories produced a variety of tachometers, not to mention a wide range of other automotive instruments, over the years. Many English and European cars were fitted with these devices and electronic tachometers were also sold as accessory instruments. In some cases, the original equipment instruments were branded “Jaeger” but were otherwise the same.

There are three broad classes of tachometer (and speedometer) – mechanical, electrical and electronic.

Mechanical, cable-driven tachometers were of three types:

<table>
<thead>
<tr>
<th>Type</th>
<th>Identification</th>
<th>Approximate usage period:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governor</td>
<td>X.nn</td>
<td>Supplied from 1920 to late 1940s</td>
</tr>
<tr>
<td>Chronometric</td>
<td>RC nnn</td>
<td>Supplied from 1930 to 1970s</td>
</tr>
<tr>
<td>Magnetic</td>
<td>RN nnn</td>
<td>Supplied from 1940s to mid/late 1970s</td>
</tr>
<tr>
<td></td>
<td>RSM nnn</td>
<td>RSM mainly/only used for motorcycles</td>
</tr>
</tbody>
</table>

The above tachometers had the same internals as the comparable speedometer, without the odometer bits, and were driven by a cable connected to the camshaft or distributor, as in the Spitfire, Vitesse etc. The chronometric type was mostly found on motorcycles although chronometric instruments were frequently fitted to “competition” cars due to their excellent accuracy. (Some faultfinding information for cable-driven instruments is provided in appendix B to this document.)

Two classes of electrical tachometer are found:

<table>
<thead>
<tr>
<th>Type</th>
<th>Identification</th>
<th>Approximate usage period:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltmeter</td>
<td>RV nnnn (early Xnnnnnn & Znnnnnn)</td>
<td>Supplied from ???? to early 1970s</td>
</tr>
<tr>
<td>Electromag</td>
<td>RE nnnn</td>
<td>Supplied from 1930 to 1970s</td>
</tr>
</tbody>
</table>

RV electrical tachometers are often found on Jaguar/Daimler vehicles. These use a generator mounted on the engine, usually attached to the camshaft, and the indicator is a voltmeter that measures the voltage produced by the generator and is calibrated in rpm rather than Volts. These used the same style meter movement as used in the Smiths electronic tachometers until the early 1970s.

Electromag instruments were a hybrid electro-mechanical instrument only ever fitted to commercial vehicles, primarily Leyland, and comprised a multi-phase generator as a sensor and an electric servo-motor driving an "AT" magnetic movement to indicate speed.

With the advent of transistors, and later on integrated circuits, these components were utilised to eliminate expensive transmitters and drive cables. These electronic instruments could be readily fitted to any car, either as original equipment or as an accessory after a vehicle had been purchased. Various types were manufactured by Smiths. The RVI and RVC types detect pulses generated by the ignition system or, for the RVP and RGP types, a pulse generator fitted to the diesel engine.

Electronic impulse tachometers:

<table>
<thead>
<tr>
<th>Type</th>
<th>Identification</th>
<th>Approximate usage period:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current sense</td>
<td>RVI nnnn</td>
<td>Supplied from mid 1960s to early 1970s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two distinct types of RVI were produced but external wiring is similar for each.</td>
</tr>
<tr>
<td>Contact (voltage)</td>
<td>RVC nnnn</td>
<td>Supplied from early 1970s</td>
</tr>
<tr>
<td>generator sense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse generator</td>
<td>RVP nnnn RGP nnnn</td>
<td>Used for commercial diesel vehicles and worked with an external generator similar to the RV device. Not often seen. Usually 24V.</td>
</tr>
</tbody>
</table>

The remainder of this document will deal only with RVI and RVC electronic tachometers.
Identifying a tachometer:

Mark Olson of Accutach uses a scheme for categorising the different Smiths tachometers and I am not about to re-invent the wheel so have used his system within this document. Mark’s document can be found at https://accutach.com/smiths-tachs and it is well worth looking at. To summarise, tachometers are classed as three “generations”, to which I will add three further classes, generation 0, generation 0.5 and generation 4. These generations are:

Generation 0 (RV) - an electrical tachometer which required a generator producing a voltage proportional to r.p.m. Circuitry comprised a full-wave (bridge) rectifier and a wire-wound calibration resistor. The movement in these instruments is essentially the same as that used in generation 1 to 3 instruments.

Generation 0.5 (RVI) – The first Smiths electronic tachometer. The indicator head had two spade terminals on the rear similar to the RV instrument. This connected to a remote sensing module which had a single connection to the distributor side of the ignition coil. Mainly found on early 1960s Volvo cars but may also have been used on other vehicles. Though it used a single wire connection to the coil as for the RVC type, these instruments were marked “RVI”. (Information on these instruments was gathered mainly from www.sw-em.com and www.VolvoSoultions.com) If anybody has any “dead” remote modules for this tachometer lying around, I would be interested in getting my hands on one.

Generation 1 (RVI) – the second electronic Smiths instrument which used two transistors in a monostable multivibrator configuration. These instruments used an inductive pickup within the instrument to sense ignition current. The transformer primary connection was by way of a loop of wire in series with the ignition coil and attached to the instrument on the rear of the case.

Generation 2 (RVI) – also used inductive coupling to the ignition system but used a single transistor in a blocking oscillator circuit. The transformer primary winding was inside the case and connected to the car via two bullet connectors – one male, one female – mounted on the rear of the case.

Generation 3 (RVC) – sensed voltage spikes at the coil to trigger the instrument. An integrated circuit is used to drive the meter. Connection to the coil was by either a single bullet connector on the rear of the case or to a multi-pin bullet connector on connecting wires from the case.

Generation 4 (RVC) – A new meter movement but a similar circuit to, and using the same integrated circuit and voltage sensing as per “gen-3” above. Meter mounting screws in a “Y” pattern rather than the previous rectangular pattern. Connection to the ignition coil is by way of a connector protruding from the back of the case.

Other Smiths tachometers

You may come across Smiths ATRC tachometers. These instruments are designed for use in industrial applications and require a special generator/pickup to supply the speed signal. Not something you would normally fit to a vehicle.

Gen-0.5 instruments (see above) are not further dealt with here.
The Smiths RVI electronic tachometers

The “RVI” tachometers sensed ignition system current pulses using a current transformer to transfer pulses to the tachometer circuitry without any direct electrical connection to the ignition circuit. These instruments are identified by the letters “RVI”, followed by numbers, printed on the dial. These identification characters are sometimes printed on the edge of the dial and may be hidden in normal use by the instrument bezel.

As noted earlier, there are two quite different versions of the RVI tachometer. These can be differentiated as follows.

The “early” or gen-1 type instrument has a pulse lead looped through a small nylon block and metal bracket assembly outside the case. This type uses two transistors in a monostable multivibrator circuit.

The “later” or gen-2 type instrument has two bullet type connectors protruding from the rear of the case and a single transistor blocking oscillator monostable circuit inside.

There is no difference in the external wiring between the gen-1 and gen-2 type tachometers, both of which are marked “RVI”. The pulse leads are placed in series with the coil, either in the coil supply lead from the ignition supply to the coil or between the coil and the distributor. The sense, or polarity, of pulse leads is critical to the operation of both types.
RVI Gen-1 tachometers:

As noted above, there are two versions of the RVI type tachometer and within each type there are two sub-variants:- OEM and Accessory. The rear of the Gen-1 type is distinguished by the external pulse loop assembly.

RVI Gen-1 OEM tachometer:

This is the Gen-1 OEM tachometer which has one of the power supply connections electrically connected to the metal case. In many cases the “red-line” will be marked on the dial but not always. Similarly, polarity will be generally be marked on the dial as shown but this also may not always the case.

CAUTION:

If the connections on the back of the tachometer look like those in this picture, be very careful. This type of tachometer and was produced in both positive and negative earth versions.

There is nothing special about the pulse lead wire, so if in poor condition or to eliminate unnecessary joints, replace with a new length of wire rather than risk later problems with faulty joints.

Use 16 AWG/1.5 mm or 18 AWG/1.0 mm wire for this job.

A FURTHER WORD OF WARNING:

Some positive earth instruments may have been internally converted to negative earth. If you are buying a second-hand tachometer, marked “positive earth”, check with the seller as to the electrical polarity of the vehicle it came from!
RVI Gen-1 accessory tachometer:

Picture at left is the Gen-1 accessory type tachometer. The main difference here is that there is no electrical connection between the internal circuitry and the instrument case. Two or three terminals for power supply connection are provided as can be seen in the lower part of the picture. This particular example has two connection terminals, the third terminal being covered by a red plastic cap. The centre terminal is the positive connection. The right-hand terminal, as shown in the picture, is the negative 12V connection and where provided (uncapped), on early production units, the left-hand terminal is the negative 6V connection. The early impulse pickup assembly is shown in detail below.

The figures below show the wiring for the pulse lead block attaching to the back of Gen-1 instruments. Accessory type instruments had coloured markers at the end of the long pulse leads when new but these markers were almost always cut off once the tachometer was fitted to a vehicle. Since the sense (or polarity) of these connections is critical to the operation of the tachometer, the sketch below is provided to assist in getting it right first time.

View of assembly as mounted, from rear of tachometer. Dashed line is the loop present on factory/OEM instruments but may be removed for use with higher current (>4 Amps) ignition coils.

Iron core
Plastic former
Early type RVI pulse lead assembly

A most important piece of the pulse lead assembly of the early RVI tachometer is the "Iron core". Without it, the tachometer will not work! One could easily be made if required. This “little bit of tin” completes the magnetic circuit that allows the tachometer to sense pulses. **It is a fairly simple matter to make a new iron core. See Appendix C to this document for details.**

The plastic former shown in the diagram holds the pulse lead in place to prevent the wire chafing against the case and shorting out. A replacement could be fabricated from a piece of polyethylene (from an old plastic chopping board for example).

Accessory tachometers were mostly 3 inch diameter instruments. Smiths also produced an optional aluminium pod and mount to house these. A special mounting bracket was a part of the pod kit which allowed the instrument to be secured with a single screw at the rear of the pod. These were commonly used when fitting tachometers to Minis. Similar pods were used in some Volvo vehicles. Photo at right shows an accessory tachometer fitted to a pod.

Suitable mounting pods such as this are advertised on the internet and may be available locally in some areas. (Photo supplied by Mark Olson.)
RVI Gen-2 tachometers:

Metal-cased Gen-2 tachometers were always OEM instruments and in the majority of cases were negative earth.

RVI Gen-2 OEM tachometer:

The following photograph shows the connections to the later RVI tachometer. **The male pulse lead connector goes to the power supply, the female connector connects to the coil on these negative earth instruments.**

![Diagram of tachometer connections](image)

Gen-2 tachometers have the whole pulse coil assembly inside the case with connections brought out to bullet connectors as shown. This later type appears to have been produced in negative earth versions only for OEM instruments but see note below.

Note the yellow object inside the case and labelled "Calibration adjustment". This is a potentiometer that may be used to fine-tune the calibration. This adjustment, requiring only a small blade screwdriver, is often covered with a piece of adhesive paper or in some cases, a rubber plug. When finally fitting the tachometer to the vehicle, place a piece of adhesive tape over this hole to keep dust out.

Note:

It is not known for certain but it is possible that some positive earth OEM instruments of this type exist. Two different circuit boards have been found inside this model tachometer. One could only ever be used on negative earth vehicles, the other could be fitted to cars of either polarity though this would be as a "factory option" rather than a user option.

One instrument found fitted with the alternate board is an RVI 1050/06A (right) which was fitted to Rover 2200, some Morgan vehicles and possibly supplied in some BMC cars. Note the presence of a marked "red-line" area which identifies this as an OEM instrument. It may have been fitted to early production, positive earth, models. This is a 3¼ inch diameter instrument with a spun-on bezel but no polarity marked on the dial (for this particular negative earth instrument). One of the power supply terminals to this unit is connected to the case. If you find a Gen-2 instrument on a mid-late 1960s vehicle without polarity markings then check the polarity (see “Checking an electronic tachometer” section later in this document). Changing polarity involves opening the case which may require a new bezel.
RVI Gen-2 accessory tachometer

Smiths produced a plastic cased "pod-style" instrument in the Gen-2 range. This was the RVI 5000 series and was sold as an aftermarket tachometer. It was also provided as a factory (OEM) instrument in some Volvo vehicles. The Gen-2 accessory instrument shown at left.

Pulse leads are white and, when new, are marked with short red and black sleeves near the end of the wires. The red marked wire should connect (for a negative earthed vehicle) to the ignition supply.

The plastic-cased RVI 5000 series variant shown at right used the later blocking oscillator circuit. Isolation of the internals from the vehicle chassis allowed these to be fitted to both positive and negative earth vehicles. These were also fitted to some Volvo vehicles as standard equipment and marked RVI 5411/xx and RVI 5413/xx. Also marketed by Volvo as "official" Volvo accessories. The difference between the accessory and OEM versions is the provision of a 6 Volt connection option inside the rear of the case of the accessory tachometer. The rear case cover simply pops off to provide access.

The following pictures show, at left, the rear view of an OEM tachometer, without a voltage select option with the cover removed. The right-hand picture shows the same view of an accessory instrument and the voltage select terminals. Blue wire is the -12V connection as can be seen here, the brown wire the -6V connection. The black wire is the lead to the vehicle’s negative supply. Changing voltage simply involves transferring the black wire to the terminal corresponding to the required voltage.

(Left-hand photo supplied by Mark Olson)
The Smiths RVC electronic tachometers

Where the RVI tachometer senses current in the ignition circuit, the RVC type senses voltage pulses at the coil. RVC tachometers will work with most ignition systems. The pulse sensing is via single wire connected to the coil on the distributor side and requires no further modification of the cars wiring beyond providing power and light to the unit. The current loop of the RVI instruments was no more. All OEM instruments were negative earth. Internally these instruments are very different to RVI instrument. An integrated circuit is used rather than the discrete transistors used previously. There are also significant internal differences between Gen-3 and Gen-4 instruments though external connections were the same.

RVC Gen-3 tachometer:

The Gen-3 instruments retained the same style meter as previous models. Pointers and dials could be swapped between Gen-3 and the earlier instruments if desired. This ability permitted the innards and case from a Gen-3 to be used to upgrade an earlier RVI tachometer.

RVC Gen-3 OEM tachometer:

The early model RVC tachometer, with meter mounting holes in a rectangular pattern, is known to have been fitted to MG and Jaguar vehicles betin the early 1970s. The “MGB-style” (left) looks almost identical to the Gen-2 RVI model except that the dial is marked “RVCxxxx” and the female pulse lead bullet connector is replaced with a rubber plug. OEM instruments retained the bullet style connector for the pulse lead in most cases. Jaguar vehicles used this same model tachometer with the pulse and supply leads brought out to a 4-pin connector with a white wire looped between two of the pins (below right).

Note that Jaguar’s wiring to this connector in this manner allowed an RVC tachometer to be fitted in lieu of an (earlier) RVI type with no other wiring changes. Smart.

RVC Gen-3 accessory tachometer:

(No pictures of this one.)

A cylinder select switch was provided and accessed via a hole in the back of the tachometer case. Power and pulse connections were by way of three spade terminals in the same configuration as the Gen-4 instrument and the wiring was the same as for the Gen-4 instrument.
RVC Gen-4 tachometer:

The Gen-4 instrument was the last of the “classic” Smiths tachometers. Internally there were significant changes as electronics were now effectively a single component and a new type (for Smiths) of meter was used. The mounting screws for the meter were now of a “Y” pattern rather than the rectangular pattern of earlier instruments. There were also changes to the taper on the meter spindle and the positioning of the dial mounting screws. You cannot readily fit an earlier dial or pointer to a Gen-4 tachometer.

RVC Gen-4 OEM tachometer:

Connections in a late model RVC OEM device consist of a blade connector for power supply, the negative connection is to the case and the pulse lead is a single “bullet” type connector as shown at right. The “Y” mounting screw layout is plain to see here.

RVC Gen-4 accessory tachometer:

Pictures below show the rear of the “accessory” type RVC tachometer. As with earlier accessory instruments, the electronics inside are electrically isolated from the case.

Note the white selector switch above the terminals. This selector switch is only found on Gen-4 instruments, Gen-3 RVC tachometers used a switch accessed through a hole in the rear of the case. The lower picture is a close-up of the label setting out the connections for all these instruments.
The picture below left shows the RVC range’s answer to the RVI 5000 series instruments. This comprises a small indicator head designed to be mounted on a dashboard with sticky pads fitted to the base. Four wires (2 for meter, 2 for lighting) lead from the underside of the indicator head through a hole cut in the dashboard. All the electronics are housed in a rectangular metal case which is intended to be hidden behind the dashboard. Power and pulse connections are made at the electronics unit and are the same as those shown for the Gen-4 accessory tachometer above.

The pictures below show this instrument. A two-pin socket for connection to the indicator pod meter is provided and located where the hole is above “Smiths” in this picture.
Checking an electronic tachometer

The following tables set out a few quick checks that can be made, prior to connecting, to determine if an OEM tachometer has a chance of working. Connections will differ on Accessory type tachs but values should be similar. These are listed below for each type I have available to test.

The only tool required is a multimeter that can measure both resistance (Ohms) and current draw in milliamps. Generally a digital meter has the red lead positive on resistance ranges, where it is negative on an analogue multimeter. To make life easier, tests have been carried out using each type of meter and the results set out in separate tables for each multimeter type. Where resistance values are given, these will help determine the polarity of the tachometer.

The “supply” terminal is the one that connects to the car’s ignition controlled supply, the other lead to case earth. For accessory-type tachometers, which have isolated terminals for positive and negative, the “supply” terminal for these measurements is the positive terminal of the tachometer.

The resistance readings assume a negative earth tachometer but if the readings are “back-to-front” then, either the polarity of the multimeter leads is not what you thought or the tachometer is positive earth. Check polarity of meter leads first.

Perform the resistance check first, using the nearest range on your meter to that given in the table. Avoid using the higher resistance ranges on multimeters.

Note: The measured resistance may “wander” when the meter leads are first connected to the instrument. Allow reading to settle down to a steady value before checking against values provided.

If resistance checks are satisfactory proceed to check the current drawn by the tachometer. In any event a substantially different resistance or current reading, lower or higher, than the range provided in the table implies a fault in the tachometer.

Note: The values in the tables below apply only to instruments fitted with their original Smiths circuit boards. If the internals have been altered or replaced quite different readings are likely to be noted.

If testing Jaguar tachometers, make sure you identify the correct type, which is printed on the dial but may not be legible. The left-hand tachometer in the picture is a Jaguar gen-2 RVI tachometer (two white leads from inside case), the one on the right a gen-3 RVC (single white/blue lead from inside case). Use tests below appropriate for type.
<table>
<thead>
<tr>
<th>TEST METHODS – DIGITAL MULTIMETER</th>
<th>TACHOMETER IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Red lead positive)</td>
<td></td>
</tr>
<tr>
<td>RVI gen-1 monostable type with external pulse coupling. Positive and negative earth OEM versions available. One instrument tested using meter’s 0-2000Ω range. Measured resistance should be in the range 600Ω to 900Ω with the red meter lead to (12V) supply terminal. Measured resistance should be in the range 300Ω to 600Ω with the black meter lead to supply terminal. Tachometer draws about 50mA to 60mA from power supply with no input pulse. No current indicates an open circuit inside the tachometer. A significantly different current indicates tachometer needs service.</td>
<td></td>
</tr>
<tr>
<td>RVI gen-2 blocking oscillator type with internal coupling. Two instruments tested using meter’s 0-2000Ω range Measured resistance should be infinite (no reading) with the red meter lead to supply terminal. Measured resistance should be in the range 150Ω to 300Ω with the black meter lead to supply terminal. Tachometer draws no indicated current from power supply with no input If a current is measured with no pulse input, transistor is leaky/shorted. This test does not detect open circuit transistor, resistor or open winding in the pulse transformer.</td>
<td></td>
</tr>
<tr>
<td>RVC gen-3 early type with rectangular pattern mounting screws. One instrument tested. Read about 6.6kΩ irrespective of the polarity of the leads. Current draw with no pulse lead connected is about 30mA.</td>
<td></td>
</tr>
<tr>
<td>RVC gen-4 later type with "Y" pattern mounting screws. Negative earth OEM instrument only. Five instruments tested using meter’s 0-20kΩ range Measured resistance should be in the range 6000Ω to 7000Ω with the red meter lead to supply terminal. Measured resistance should be in the range 4500Ω to 5000Ω with the black meter lead to supply terminal. Current draw with no pulse lead connected is about 30mA.</td>
<td></td>
</tr>
</tbody>
</table>

OEM

Accessory
<table>
<thead>
<tr>
<th>TEST METHODS – MOVING COIL MULTIMETER (Red lead negative)</th>
<th>TACHOMETER IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVI monostable type with external pulse coupling. Positive and negative earth OEM versions available. One instrument tested using meter’s Rx100Ω range. Measured resistance should be in the range 600Ω to 700Ω with the red meter lead to supply terminal. Measured resistance should be in the range 900Ω to 1200Ω with the black meter lead to supply terminal. Tachometer draws about 50mA to 60mA from power supply with no input pulse. No current indicates an open circuit inside the tachometer. A significantly different current indicates tachometer needs service.</td>
<td></td>
</tr>
<tr>
<td>RVI blocking oscillator type with internal coupling. Two instruments tested using meter’s Rx100Ω range Measured resistance should be in the range 150Ω to 300Ω with the red meter lead to supply terminal. Measured resistance with the black meter lead to supply terminal should be infinite (no reading). Tachometer draws no indicated current from power supply with no input. If a current is measured, with no pulse input, transistor is leaky/shorted. This test does not detect open circuit transistor, resistor or open winding in the pulse transformer.</td>
<td></td>
</tr>
<tr>
<td>RVC early type with rectangular pattern mounting screws. One instrument tested using meter’s Rx100Ω range Measured resistance 1200Ω with the red meter lead to supply terminal. Measured resistance should be in the range 4500Ω with the black meter lead to supply terminal. Current draw with no pulse lead connected is about 30mA.</td>
<td></td>
</tr>
<tr>
<td>RVC later type with “Y” pattern mounting screws. Negative earth OEM instrument only. Five instruments tested using meter’s Rx100Ω range Measured resistance should be in the range 3000Ω to 5500Ω with the red meter lead to supply terminal. Measured resistance should be in the range 4500Ω to 5500Ω with the black meter lead to supply terminal. Current draw with no pulse lead connected is about 30mA.</td>
<td></td>
</tr>
</tbody>
</table>
Fitting a tachometer to the car – and getting it working!

Any tachometer that relies on the case for one of its supply connections will be permanently damaged if connected to a vehicle with opposite polarity. Refer to “Checking an electronic tachometer” below to determine/check this. Also note the polarity on the dial of the instrument and if it does not agree with what you have determined then get it checked out. Note that most Gen-2 OEM instruments and all Gen-3 and Gen-4 OEM instruments will be negative earth as supplied to the manufacturer.

All tachometers:

First step when fitting any tachometer is to check the polarity and voltage is correct for the target vehicle. For accessory instruments, with no electrical connection between the electronics inside and the case, this simply means wiring the power supply terminals correctly according to whether the car is negative or positive earth and selecting voltage if it is an option. Note: The presence of an alternator on a car does not mean it is negative earth as some may tell you. Back in the day, BMC (later to become part of British Leyland), and possibly other car makers, equipped some of their vehicles (Austin/Morris/MG…) with positive earth alternators. Probably not many around now but you have been warned.

The following procedure may save a tachometer from damage but this cannot be guaranteed so use only as a last-ditch tactic.

If polarity determination is inconclusive (Gen-1 & Gen-2 OEM) then temporarily connect to a 12 V supply with a 12V/2W lamp in series with the supply lead. If the lamp lights brightly as soon as power is supplied then the connected polarity is wrong or the tachometer has an internal short. If the lamp lights dimly then the polarity is correct. Once the polarity is known 12 Volts can be connected to the instrument.

RVI Instruments:

The impulse leads need to be connected. These too are polarity sensitive but getting them wrong will not do any harm. The tachometer simply won’t work. For these instruments the coil current, but only the coil current, must pass through the pulse lead. The pulse lead itself can be wired between the ignition switch and the coil or between the coil and distributor replacing any existing wire. Note: If the car is fitted with a ballasted ignition coil then the ballast resistor must be left in circuit but the tachometer will still work. This is easily done if the system uses a ballast resistor but many used a resistance wire, often yellow, in the wiring loom. The tachometer will be unlikely to work with the ballast removed. A ballasted system is essentially a 6V coil with a series resistance to limit current. At a continuous 12V, the 6V coil is unlikely to last long.

The diagram below shows how to connect the Gen-2 RVI OEM instrument. Illustrations in Appendix A show the earlier type.

While it is possible to place a jumper as shown at “B”, the connection “A” represents “best practice” with the power to the instrument from a fused supply.

This should have the tachometer displaying rpm with the engine running. If not, check first for smoke (supply polarity wrong) then for 12 volts between the case and the spade terminal. If this is OK then swap connections to terminals 1 and 2. If the tachometer is still not working then it needs repair.
RVC instruments:
The sketch below shows how all OEM RVC tachometers are connected. The accessory tachometer is wired similarly though the terminals style differ – refer Appendix A.

Tachometer troubleshooting notes - installing:

If the tachometer is not working, recheck the voltage supply to the instrument paying particular attention to the earth connection. Do not rely on a terminal placed under a mounting nut. Use the spade connector on the case, or if not present, secure the connection under one of the meter mounting screws on the case, using a proper terminal rather than a loop of wire. **Hint:** If the tachometer operates until you turn the lights on, then you have a tachometer earth problem.

RVI type:
If the tachometer is an RVI type check the pulse leads are correctly connected in series with the coil. It may be that the tachometer will indicate with the pulse leads reversed but runs out of “puff” once the revs get up a bit. Try swapping the pulse leads (again) to see if it works/improves. (This should not be an issue if replacing an OEM unit with an equivalent good replacement unit.)

Note 1: Operation of an RVI instrument relies on the collapse of a magnetic field generated by current flow in the pulse lead. If a current to any other component of the car’s electrical system also flows in this pulse lead, then the magnetic field will not collapse completely and triggering of the tachometer will be erratic or not occur at all. If the pulse lead is connected on the supply side of the coil, then check for “extra” connections at the coil. There should be only one wire connected (plus possibly a suppression capacitor) to the coil supply terminal in an unballasted ignition system and two wires for a ballasted system. Either re-locate any extra connections or wire the tachometer pulse lead between the coil and distributor. (Thanks to Brian Gough of Vancouver, Canada for raising this.)

Note 2: The RVI tachometer is a very reliable instrument but it is also very fussy. If the current drawn by the coil is too high they can play up. Ignition coil currents in the range 3 to 4 Amps are what it’s designed for. If a sports or high-performance ignition coil has been fitted the tachometer may not operate correctly or at all. If this is the case, temporarily replace the higher spec coil with a standard coil to determine whether this is the problem. There is not a lot you can do with a Gen-2 instrument in this situation but the Gen-1 instrument can often operate with a high-performance coil if the loop on the pulse lead is removed so that the pulse lead passes through the plastic block without looping.

Should the engine not run and if you have replaced an RVI tachometer with an RVC type then check that the old tachometer pulse leads have been joined together. Failing to do this, or to run a new ignition supply lead to the coil, will leave the coil unpowered. In a car with a ballasted coil, there will be spark when cranking the engine but not otherwise!
RVC type:

For an RVC type meter make sure the pulse is taken from the distributor side of the ignition coil.

In the case of a Gen-4 RVC tachometer reading zero with the engine running, firmly tap the tachometer glass a couple of times to free a stuck meter. These instruments are prone to the needle sticking at zero. It may be that it will also free up itself at higher revs.

If everything seems to be correct but the tachometer is not reading correctly, most probably the needle waves at higher revs, check the points gap, condenser and coil.

If possible re-check the current drawn by the tachometer. There should be some but it will only be a few tens of milliamps. If no current can be measured, the instrument needs servicing.

If you are a dab hand with a multimeter and soldering iron, and have some basic knowledge of electronic circuits, then almost all the data you need to repair one of these instruments is available on the internet. Otherwise find someone with the necessary skills to check/repair it.

Modified ignition systems:

None of the Smiths tachometers described in this document are suitable for use in systems using multiple coils.

If a Transistor Assisted Ignition (TAI)/Transistor Assisted Contact (TAC) system is installed with an original specification coil then the RVI tachometer should continue to work. An RVI tachometer may not work in systems with high (>4 Amps) coil primary current. Gen-1 instruments may be adapted by reducing the number of turns of the pulse lead in the pickup. Pertronix provide some information on this modification at http://support.pertronix.com/kb/faq.php?id=34. RVI tachometers may not work with systems that alter the dwell time of the ignition system as Lumenition ignition systems appear to do.

Any other ignition enhancement system will have RVI systems struggling to work consistently, if at all.

RVC instruments should work in almost all cases. Further information may be available from the ignition system manufacturer so check their website.

For many cars supplied with RVI tachometers there may be an equivalent RVC version available from a later model vehicle.

Gen-0 to Gen-3 instruments all used the same meter movement so swapping dials, pointers and cases is possible with little trouble. As noted earlier in this document, Gen-4 use a different meter, different pointers and dial mounting holes spacing, so swapping out parts is not readily done.

For Capacitor Discharge Ignition (CDI) systems, RVI tachometers are unlikely to be capable of working and should be replaced by an RVC type. CDI ignition systems typically generate very short ignition pulses and run at several hundred volts, which exceeds the voltage rating of automotive electrical cable. Voltages of this magnitude behind the dash don’t bear thinking about. Similar comments apply to RVC tachometer wiring and this would need to be considered for any CDI system without a dedicated tachometer output. Even then, some modification to the RVC pickup wiring may be required if a dedicated “tach” output is not provided. Check with the CDI manufacturer’s user manual.

External tachometer interface modules:

Interface modules are available that allow RVI tachometers to work with modified ignition systems. Two examples may be found at: http://www.technoversions.com/TachMatchHome.html (U.S.A)
I have not used either device and there may be others out there. The reader will have to judge for her/himself whether options such as these present a suitable solution.

Troubleshooting electronic tachometer – already fitted:

This section assumes that a tachometer has been fitted to a car some time ago, possibly as original equipment, and has now begun operating erratically or is determined to be out of calibration. It is further assumed that the first step already taken has been to check the ignition system and adjust or repair as necessary.

Ensure that all connections to the tachometer are secure. Pay particular attention to earth connections behind the dash, both at instruments themselves and the connection to the body of the car.

Have there been any additions or modifications done to the car in the recent past that could affect the instrument? Bear in mind that the tachometer could have been out of calibration for quite some time before you noticed the fact. RVI instruments are prone to misbehave if a bit of “extra” current has been added to the pulse lead.

Beyond carrying out the steps set out above there is really nothing that can be done without removing the tachometer and opening up the case. Another tachometer could be obtained and fitted but unless its maintenance history is known you may be no better off.

These instruments are decades old and have possibly had no maintenance nor otherwise serviced for a considerable period, if at all. The internal electronic components inside are affected by age. Lubricants can thicken over time to the point that they behave more like glue and the needle exhibits slow or jerky movement. Do not squirt CRC or similar on the bearings – it may improve things temporarily but don’t do it. Cleaning and adjusting the meter is to be preferred. Lubrication requirements for the meters are not too arduous but clearances are tight. End float on the meter spindles of most of these instruments should be 0.003 to 0.004 inches. If this reduces for any reason then meter (pointer) movement will be sluggish/erratic/cease and be worse at low temperatures.

Balance of the meter and pointer is achieved by adjusting weights on the meter assembly itself. These are held in place by friction so if a tachometer has been dropped then one or more of these “balance weights” may have moved which will affect the linearity of the instrument. It may read low over the first half of the range and high over the upper half of its range. This will require that the meter is “re-poised” which is a fiddly job at the best of times and also requires that the instrument is removed from its case and is operable.

With the exception of the Gen-4 instruments, there is a calibration potentiometer that may be tweaked to improve calibration but it may not be enough and it will not correct linearity errors. This calibration “pot” may not be accessible without removing the instrument from its case.

The circuitry within these instruments is simple and a considerable amount of service information is available on the internet and will not be presented here. These instruments are readily repaired by almost anyone with a basic knowledge of electronics and proficiency with a soldering iron. There are also plenty of companies that are able to repair these for a fee.
Appendix A – accessory tachometer wiring

Positive earth vehicle
Appendix A – accessory tachometer wiring continued

Negative earth vehicle

![Diagram of tachometer wiring for negative earth vehicles]
Appendix B – Possibly useful information?

Mechanical tachometer woes

Mechanical tachometers are fairly reliable but will lose accuracy over time and will need recalibrating. Internal wear can also cause them to lose accuracy and read erratically. Some special equipment is required to recalibrate these.

Some faults with these tachometers are external to the instrument. The following table provides some troubleshooting tips for these tachometers.

Note that these “faults” also apply to any cable-driven instrument such as a speedometer.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Probable cause</th>
<th>Troubleshooting/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument doesn’t read</td>
<td>Drive/drive cable faulty.</td>
<td>Disconnect drive cable from instrument and remove inner drive cable. If broken or worn then replace. Replace drive cable and check the inner cable turns when engine cranked/run. If cable serviceable, refer to “Needle doesn’t move...” below.</td>
</tr>
<tr>
<td>Needle doesn’t move or pointer moves erratically</td>
<td>Internal wear and instrument needs repair.</td>
<td>Wear in the instrument. Speedcup (drag-cup) is pinched between thrust plate in rotor and top bearing in older instruments. This could be due to old age and/or a too long inner drive cable. There must be no end thrust applied to the instrument head by the drive cable. Check the length of the inner drive cable by undoing the cable nut at the rear of the instrument and check that the ferrule on the end of the outer cable butts up to the instrument body readily without applying any force to the instrument.</td>
</tr>
<tr>
<td>Needle wavers at low revs</td>
<td>Drive cable</td>
<td>The drive cable needs replacing. Also check instrument shaft is not binding or hard to turn else a new cable will only be a temporary fix.</td>
</tr>
<tr>
<td>Needle flicks to full scale or beyond</td>
<td>Severe internal wear or oil in instrument.</td>
<td>Replace or repair instrument.</td>
</tr>
</tbody>
</table>

Instrument drive cables comprise an inner wire core with closely wound layers of thin wire wound over this core. Each layer is wound in the opposite direction to the previous one. The end result is a cable with very little torsional movement (twist) when new. These deteriorate over time and allow the cable to “wind-up” in use. This leads to erratic operation or “wavering” in the needle at lower indications.

Miscellaneous

Smiths bezels incorporated a resilient material to hold the instrument glass. Over time, this loses its resilience and may “bleed” onto the glass and bezel. For 4” instruments, replace with 4mm diameter sponge rubber cord. For 2” instruments, 3mm sponge cord works well. In New Zealand Para Rubber do/did stock 4mm sponge cord. Rubbermark stock 3mm and 4mm sponge cord. Rubbermark’s stock codes are:

- 73.16030N SPONGE CORD 3MM DIA (Neoprene)
- 73.16040E SPONGE CORD 4MM DIA (EPDM)
To remove the old (formerly) resilient material from chrome bezels:
1. scrape out with a piece of wood (toothpick e.g.) or plastic. If it’s so hard a toothpick won’t touch it then go to 2.
2. soak the bezel in methylated spirits overnight and remove the resulting gunge with a toothpick or stiff brush (an old toothbrush works just fine) as appropriate.
3. Repeat step 2 until clean.

Give a chrome bezel a touch up with metal polish once cleaned.
Do not soak (black) painted bezels or the paint finish will be damaged.
Note that chrome-finish bezels are made from brass and painted bezels are steel. (It may be that older bezels are brass, newer are steel.)

Join rubber foam cord using contact adhesive a butt joint should be OK. If using cyano-acrylate (Super-glue) or similar rigid adhesive, use a lap joint.
Make sure all the rust and old rubber has been cleaned from the outer rim of the instrument case before refitting the bezel. A light smear of K-Y jelly (the best rubber lubricant known to man!) on the sponge cord prior to assembly helps too.

RVI tachometer triggering:
For those with an interest in the technical aspects of the operation of these instruments, the following is Smiths description of operation for the gen-1 instrument. It is assumed that the gen-2 instrument operates similarly sensing points opening rather than points closing.

“The primary of the triggering transformer (T) is connected in series with the primary of the engine ignition coil, so that when the contact breaker in the engine distributor closes, the current flowing to feed the ignition coil passes through the primary of the transformer energising the core. When the contact breaker opens to provide a spark to the engine, the flux in the transformer core collapses and appears as a short duration voltage pulse across the secondary of the triggering transformer.”

Any ignition system that does not permit the tachometer’s triggering transformer to fully energise (saturate), or “de-energise” will adversely affect operation.
Appendix C - Gen-1 tachometer iron core:
The sketch below is a pattern the iron core, or clip, of the Gen-1 tachometer. One can readily be made if required,
The material used should be soft iron or mild steel. Do not use high-tensile steel as a lot of roofing iron is made from.
The thickness is not absolutely critical. 24 to 28 s.w.g /23 to 27 a.w.g/0.4 to 0.6mm is the ideal range. Thinner material may be too flimsy and thicker material may not fit properly. The legs of this clip should be a sliding fit inside those protruding from the tachometer itself.
If you can find an old power transformer or a largish audio transformer, the laminations that form the core of these transformers are an ideal source of material for these clips.
The 2mm hole shown accepts the nub formed on the top of the plastic former. This will not be necessary if you also have to make a former to hold the loop wires. The mounting bolt passes through the 3mm dia. hole.
It is important that the hatched area in this plan is free of paint, including varnish, and burrs to provide maximum contact area with the internal clip. Tinplate may be OK but zinc (galvanising) should be removed.
When making these, I have always used transformer core laminations.
The extra width of the centre part is primarily to provide support around the mounting bolt hole. A strip of metal 5mm wide could be used for the whole thing but I would suggest in this case a brass washer is placed beneath the securing nut.

Material:
0.5 mm (25 SWG) soft iron
(annealed low-carbon steel).

Edge view of the finished clip.
Length of the legs should be within +1/-0mm of that shown. The width of each leg should be within ± 0.5mm.
Change log:

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Change list</th>
</tr>
</thead>
</table>
| Dec 2019 | 2 | Re-order document. contents
Add section for Gen 0.5 instrument
Change (widen) acceptable resistance values for Gen-1 testing to account for variations between accessory and OEM types.
Section on replacing mechanical tachometer with electronic removed.
Added comments re other types of tachometer (ATRC etc.)
Gen-1 pickup clip details added |